Apache Flink 分布式流处理框架中API的使用部分

Apache Flink 是一个分布式流处理框架,支持批处理和流处理。在 Flink 中,API 是核心部分,允许用户定义数据流处理逻辑、配置作业并执行操作。Flink 提供了多种 API 来满足不同的需求,包括 DataStream APIDataSet API(批处理 API)、Table APISQL API
1. Flink DataStream API(流处理)
DataStream API 是 Flink 最常用的 API,专为实时数据流处理而设计。它支持通过流式操作对数据进行处理,并生成一个数据流结果。
典型的数据流处理操作
以下是一些常用的 DataStream API 操作示例:
创建流

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.readTextFile("input.txt");

映射操作

DataStream<Integer> lengths = text.map(new MapFunction<String, Integer>() {
  @Override
  public Integer map(String value) {
    return value.length();
  }
});

过滤操作

DataStream<String> filtered = text.filter(value -> value.contains("Flink"));

窗口操作

DataStream<Integer> windowedStream = text
    .map(value -> value.length())
    .keyBy(value -> 1)  // 使用常量键值进行分区
    .timeWindow(Time.seconds(5))
    .sum(0);

窗口内聚合

DataStream<Integer> sumStream = text
    .map(new MapFunction<String, Integer>() {
      @Override
      public Integer map(String value) {
        return value.length();
      }
    })
    .keyBy(value -> 1)
    .timeWindow(Time.seconds(5))
    .reduce(new ReduceFunction<Integer>() {
      @Override
      public Integer reduce(Integer value1, Integer value2) {
        return value1 + value2;
      }
    });

Sink操作(输出)

sumStream.addSink(new SinkFunction<Integer>() {
  @Override
  public void invoke(Integer value, Context context) throws Exception {
    System.out.println("Result: " + value);
  }
});

执行作业

env.execute("Flink Stream Job");

2. Flink DataSet API(批处理)
DataSet API 主要用于处理批数据,也就是一次性加载到内存中的数据集。批处理作业通常不涉及实时数据流,而是对静态数据源进行处理。
典型的批处理操作
创建数据集

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = env.readTextFile("input.txt");

映射操作

DataSet<Integer> lengths = text.map(new MapFunction<String, Integer>() {
  @Override
  public Integer map(String value) {
    return value.length();
  }
});

过滤操作

DataSet<String> filtered = text.filter(value -> value.contains("Flink"));

聚合操作

DataSet<Integer> sum = text
    .map(new MapFunction<String, Integer>() {
      @Override
      public Integer map(String value) {
        return value.length();
      }
    })
    .reduce(new ReduceFunction<Integer>() {
      @Override
      public Integer reduce(Integer value1, Integer value2) {
        return value1 + value2;
      }
    });

输出结果

sum.writeAsText("output.txt");

执行作业

env.execute("Flink Batch Job");

3. Flink Table API & SQL API
Flink 的 Table API 和 SQL API 是一种更高级的抽象,允许用户以类似 SQL 的方式操作流数据和批数据。它们提供了一种声明式的方式来表达流处理逻辑。
Table API 示例
创建表环境

StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

注册表

tableEnv.createTemporaryTable("MyTable", tableDescriptor);

查询表

Table result = tableEnv.from("MyTable")
    .select("column1, column2")
    .filter("column1 > 100");

转换为流

DataStream<Row> rowStream = tableEnv.toDataStream(result);

SQL API 示例
创建表环境

StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

查询 SQL

String query = "SELECT column1, column2 FROM MyTable WHERE column1 > 100";
Table result = tableEnv.sqlQuery(query);

执行 SQL 查询

tableEnv.executeSql("CREATE TABLE ...");

4. Flink API 组合使用
Flink 的强大之处在于可以将不同类型的 API 进行组合使用。例如,你可以通过 DataStream API 和 Table API 的结合来实现更复杂的流处理逻辑。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

// 使用 DataStream API 读取数据
DataStream<String> text = env.readTextFile("input.txt");

// 将 DataStream 转换为 Table
Table table = tableEnv.fromDataStream(text, "columnName");

// 使用 SQL API 执行 SQL 查询
Table result = tableEnv.sqlQuery("SELECT * FROM " + table);

// 将结果转换回 DataStream
DataStream<Row> resultStream = tableEnv.toDataStream(result);

5. Flink API 中的 KeyedStream 和 Window
Flink 提供了丰富的窗口操作和状态管理功能,支持按照键(Key)对数据进行分区,进而进行窗口计算。
KeyedStream
KeyBy 操作:java

DataStream<String> keyedStream = text.keyBy(value -> value);

Window 操作
时间窗口

DataStream<Integer> result = text
    .map(value -> value.length())
    .keyBy(value -> 1)
    .timeWindow(Time.seconds(10))
    .sum(0);

滚动窗口

DataStream<Integer> result = text
    .map(value -> value.length())
    .keyBy(value -> 1)
    .window(TumblingEventTimeWindows.of(Time.seconds(10)))
    .sum(0);

总结
DataStream API 适用于流式数据的实时处理,提供了丰富的转换、过滤、聚合等操作。
DataSet API 适用于批处理数据,支持类似于 MapReduce 的操作。
Table API 和 SQL API 提供了更高级的抽象,允许通过 SQL 查询来处理数据。
窗口和状态管理 支持对流数据进行按时间或按事件划分的窗口操作。
Flink 提供的多种 API 能够支持各种不同的处理需求,从简单的流处理到复杂的事件驱动计算。如果你需要更高层次的抽象和更易用的 API,可以考虑使用 Table API 或 SQL API。

发布者:myrgd,转载请注明出处:https://www.object-c.cn/4963

Like (0)
Previous 2024年11月29日 下午3:50
Next 2024年11月29日 下午4:16

相关推荐

  • 开发中如何在HarmonyOS NEXT中处理页面间的数据传递的

    在 HarmonyOS NEXT 中,页面间的数据传递是应用开发中的一个常见需求。HarmonyOS 提供了多种方法来实现页面间的数据传递,通常包括 通过 Intent(隐式和显式)传递数据、通过路由传递数据、以及使用 全局状态管理。下面将介绍几种常用的处理方式。1. 使用 Ability 和 Intent 传递数据在 HarmonyOS 中,每个页面都是一…

    2024年11月29日
    00
  • 在使用 VS Code 和 Keil 协同开发 STM32 程序

    在使用 VS Code 和 Keil 协同开发 STM32 程序时,可以利用 Keil 强大的编译器 和 VS Code 的高效代码编辑功能,结合起来提高开发效率。以下是实现协同开发的详细步骤: 前置准备安装 Keil确保已安装 Keil MDK-ARM,并配置好开发环境。Keil 下载地址:Keil 官方网站安装 VS Code下载并安装最新版本的 VS …

    2024年12月1日
    00
  • 在 Ant Design ProTable 中,如何设置不分页,依然显示分页信息,前端分页不触发

    在 Ant Design ProTable 中,默认情况下,分页是与数据请求(request)相关联的。也就是说,每当分页切换时,request 会被触发,重新请求新的数据。如果你希望在禁用分页的同时,依然显示分页控件,并且不触发 request 请求,可以通过以下方法进行配置。解决方案要在 Ant Design ProTable 中禁用分页的同时保留分页信…

    2024年11月29日
    00
  • 在 MySQL 中 utf8mb4 和 utf8mb3 两种 UTF-8 编码的字符集主要区别

    在 MySQL 中,utf8mb4 和 utf8mb3 是两种 UTF-8 编码的字符集,它们的主要区别如下:1. 支持的字符范围不同utf8mb3:原来的 UTF-8 编码实现,支持最多 3 个字节的字符。无法存储超出基本多语言平面 (BMP) 的 Unicode 字符(U+10000 至 U+10FFFF),例如某些表情符号和特殊的语言字符。主要用于存储…

    2024年12月3日
    00
  • 在 MySQL 中 ORDER BY和HAVING用于数据查询和处理

    在 MySQL 中,ORDER BY和HAVING是用于数据查询和处理的两个重要子句,通常与SELECT语句一起使用,以下是它们的具体使用方法: ORDER BY子句 其中,column1、column2等是要排序的列名。ASC表示升序排序(默认),DESC表示降序排序。 多列排序示例:如果要先按照部门编号升序排序,再按照工资降序排序,可以这样写: 按表达式…

    2024年12月15日
    00
  • 在 MacOS 上开启 HIDPI 模式的多种方案

    在 MacOS 上开启 HIDPI 模式可以帮助提升显示器的清晰度,尤其是在使用 Retina 屏幕时。以下是几种常见的方案:1. 通过终端命令启用 HIDPI 模式打开 终端 (Terminal)。输入以下命令: 然后重启 Mac,或者注销当前用户并重新登录。这将启用隐藏的高分辨率模式。2. 通过 SwitchResX 工具SwitchResX 是一个强大…

    2024年11月27日
    00
  • Redis中如何使用lua脚本redis与lua的相互调用方法

    在 Redis 中,Lua 脚本 提供了一种强大的方式来执行原子操作,可以在 Redis 服务器上直接执行 Lua 代码,从而避免了多次网络往返和保证操作的原子性。Redis 内置了对 Lua 脚本的支持,通过 EVAL 命令来执行脚本,EVALSHA 则用于执行已经加载到 Redis 服务器的脚本。1. Redis 与 Lua 脚本的基本交互1.1 基本的…

    2024年11月28日
    00
  • 部署 Harbor 时,如果运行 install 脚本报错可能导致问题的

    在部署 Harbor 时,如果运行 install 脚本报错,可能是网络问题导致的。以下是排查网络问题的方法: 1. 检查网络连通性 测试目标网络的连通性: 检查 DNS 配置: 如果解析失败,检查 /etc/resolv.conf 中的 DNS 配置,或者尝试手动指定公共 DNS,如 Google 的 8.8.8.8 或阿里云的 223.5.5.5。 2.…

    2024年12月9日
    00
  • 最新 pragma solidity 0 . 5 . 10 报错原因解决

    pragma solidity 0.5.10 会报错的原因通常与当前使用的 Solidity 编译器版本不支持该指定版本的语法有关。要解决此问题,需要确保使用正确的编译器版本或调整代码中的版本声明。 问题分析指定的版本过旧: Solidity 0.5.10 是较旧的版本,而现代的工具链(如 Truffle 或 Hardhat)可能默认安装更新版本的编译器。不…

    2024年11月27日
    00
  • 通过 PHP 读取微软邮箱(Outlook/Office 365 邮箱)

    通过 PHP 读取微软邮箱(Outlook/Office 365 邮箱)邮件,通常需要使用 Microsoft Graph API,因为微软逐步淘汰了基于用户名和密码的 IMAP/SMTP 方式。Microsoft Graph API 支持 OAuth2.0 认证,可以安全地访问和管理用户邮件。 以下是实现读取微软邮箱邮件的完整示例。 实现步骤 1. 准备工…

    2024年11月25日
    00
  • Docker 部署 Navidrome 服务器与远程访问听歌的教程

    Navidrome 是一个轻量级、功能强大的音乐流媒体服务器,可以通过 Docker 容器方便地部署。本教程涵盖从本地部署到远程访问的详细步骤。 一、环境准备 1. 安装 Docker 和 Docker Compose 在服务器(或本地机器)上安装 Docker 和 Docker Compose。 安装 Docker Ubuntu 示例: CentOS 示例…

    2024年11月22日
    00
  • 在Ubuntu上安装RabbitMQ 的简单过程

    在Ubuntu上安装RabbitMQ是一个简单的过程,以下是详细步骤: 1. 更新系统包 2. 添加 RabbitMQ 和 Erlang 的官方存储库 RabbitMQ 依赖于 Erlang,因此需要确保安装正确版本的 Erlang。 2.1. 安装必要的依赖项 2.2. 添加 Erlang 存储库 2.3. 添加 RabbitMQ 存储库 3. 更新包列表…

    2024年11月22日
    00
  • 在 Debian 8 上设置 Apache 虚拟主机步骤操作

    在 Debian 8 上设置 Apache 虚拟主机需要按照以下步骤操作。这可以让您为不同的域名或子域名配置独立的网站目录和设置。 步骤 1:安装 Apache确保 Apache 已安装。如果没有安装,可以运行以下命令: 步骤 2:创建虚拟主机的目录结构为每个虚拟主机创建单独的目录,例如: 为测试,在每个目录下创建一个 index.html 文件: 设置目录…

    2024年12月2日
    00
  • 在 Ubuntu 20.04 上安装 CUDA (Compute Unified Device Architecture) 支持 NVIDIA GPU 的加速计算

    在 Ubuntu 20.04 上安装 CUDA (Compute Unified Device Architecture) 是为了支持 NVIDIA GPU 的加速计算。下面是详细的步骤,包括安装 CUDA、相关驱动以及 cuDNN(用于深度学习的库)。 步骤 1:检查系统要求 步骤 2:安装 NVIDIA 驱动 2. 添加 NVIDIA PPA: 你可以使…

    2024年11月24日
    00
  • 使用 OpenVPN 将多个局域网互联的一种配置方案

    使用 OpenVPN 将多个局域网互联是一个常见需求,尤其是在远程办公或多地分支机构互联场景下。以下是一种基于 OpenVPN 的配置方案,旨在实现多个局域网的互联。 场景说明 网络拓扑图 配置步骤 1. 安装 OpenVPN 在所有相关设备上安装 OpenVPN。以下以 Linux 为例: 2. 配置 OpenVPN 服务器 创建服务器配置文件 编辑 /e…

    2024年12月7日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信