在工业场景中使用 Apache Flink 处理 Kafka 数据是一种常见的实时流处理方案

在工业场景中使用 Apache Flink 处理 Kafka 数据是一种常见的实时流处理方案,特别是针对 ChangeRecord 数据类型时,能够帮助实现高效的实时 ETL(提取、转换、加载)或事件驱动的应用。以下是关于如何用 Flink 处理 Kafka 数据,并重点解析 ChangeRecord2 的详细步骤和注意事项。

1. ChangeRecord2 的定义

ChangeRecord2 是一种常见的变更数据捕获(CDC, Change Data Capture)格式,通常用于表示数据库表中的增量变更。它通常包含以下信息:

  • 操作类型(Operation Type):INSERT、UPDATE、DELETE。
  • 主键信息:标识变更记录的唯一标识。
  • 变更前后数据(Before/After Data):记录变更之前和之后的字段值。
  • 时间戳(Timestamp):标识变更发生的时间。

例如:

{
  "op": "UPDATE",
  "pk": "123",
  "before": {"field1": "oldValue1", "field2": "oldValue2"},
  "after": {"field1": "newValue1", "field2": "newValue2"},
  "timestamp": "2024-12-05T12:00:00Z"
}

2. Flink 和 Kafka 的集成

2.1 设置 Kafka 消费源

使用 Flink 提供的 Kafka 连接器,从 Kafka 主题中消费 ChangeRecord2 数据。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import java.util.Properties;

public class FlinkKafkaIntegration {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Kafka 配置
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "flink-consumer");

        // 添加 Kafka 源
        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(
            "change-records-topic",  // Kafka 主题
            new SimpleStringSchema(), // 简单的字符串序列化器
            properties
        );

        // 将 Kafka 数据流连接到 Flink
        env.addSource(kafkaConsumer)
           .name("Kafka Source")
           .print(); // 打印输出流数据

        env.execute("Flink Kafka Integration Example");
    }
}

2.2 解析 ChangeRecord2 数据

Flink 消费到 Kafka 数据后,需要将 JSON 格式的 ChangeRecord2 转换为 Flink 数据流中的 POJO 对象。

定义 POJO 类

public class ChangeRecord {
    public String op;           // 操作类型
    public String pk;           // 主键
    public Map<String, String> before; // 变更前数据
    public Map<String, String> after;  // 变更后数据
    public String timestamp;    // 时间戳

    // 必须要有无参构造函数和 Getter/Setter
    public ChangeRecord() {}
}

解析 JSON 数据

使用 FlinkJsonDeserializationSchema 或 GSON/Jackson 解析 JSON。

import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import com.google.gson.Gson;

public class ChangeRecordDeserializationSchema implements DeserializationSchema<ChangeRecord> {
    private Gson gson = new Gson();

    @Override
    public ChangeRecord deserialize(byte[] message) throws IOException {
        return gson.fromJson(new String(message), ChangeRecord.class);
    }

    @Override
    public boolean isEndOfStream(ChangeRecord nextElement) {
        return false;
    }

    @Override
    public TypeInformation<ChangeRecord> getProducedType() {
        return TypeInformation.of(ChangeRecord.class);
    }
}

将解析后的数据流添加到 Flink 作业:

FlinkKafkaConsumer<ChangeRecord> kafkaConsumer = new FlinkKafkaConsumer<>(
    "change-records-topic",
    new ChangeRecordDeserializationSchema(),
    properties
);

DataStream<ChangeRecord> changeRecords = env.addSource(kafkaConsumer);

3. ChangeRecord2 的数据处理

根据变更操作类型(op)对数据执行不同的逻辑处理:

3.1 基于操作类型的分流处理

changeRecords
    .process(new ProcessFunction<ChangeRecord, String>() {
        @Override
        public void processElement(ChangeRecord record, Context ctx, Collector<String> out) throws Exception {
            switch (record.op) {
                case "INSERT":
                    // 处理新增逻辑
                    out.collect("Insert: " + record.after);
                    break;
                case "UPDATE":
                    // 处理更新逻辑
                    out.collect("Update: " + record.before + " -> " + record.after);
                    break;
                case "DELETE":
                    // 处理删除逻辑
                    out.collect("Delete: " + record.before);
                    break;
                default:
                    // 未知操作
                    System.err.println("Unknown operation: " + record.op);
            }
        }
    })
    .print();

3.2 聚合与状态管理

对于实时流式数据处理,可能需要维护状态,例如:

  • 数据统计(总数、增量)。
  • 按主键跟踪最新状态。

使用 Flink 状态 API

changeRecords
    .keyBy(record -> record.pk)
    .process(new KeyedProcessFunction<String, ChangeRecord, String>() {
        private ValueState<Map<String, String>> currentState;

        @Override
        public void open(Configuration parameters) throws Exception {
            ValueStateDescriptor<Map<String, String>> descriptor =
                new ValueStateDescriptor<>("currentState", TypeInformation.of(new TypeHint<Map<String, String>>() {}));
            currentState = getRuntimeContext().getState(descriptor);
        }

        @Override
        public void processElement(ChangeRecord record, Context ctx, Collector<String> out) throws Exception {
            Map<String, String> state = currentState.value();

            if ("INSERT".equals(record.op) || "UPDATE".equals(record.op)) {
                state = record.after;
            } else if ("DELETE".equals(record.op)) {
                state = null;
            }

            currentState.update(state);
            out.collect("Current state for PK " + record.pk + ": " + state);
        }
    });

3.3 数据输出

将处理后的数据输出到目标存储系统(如 Elasticsearch、MySQL 或 Kafka):

changeRecords
    .map(record -> record.after.toString()) // 简化为字符串
    .addSink(new FlinkKafkaProducer<>(
        "processed-topic",
        new SimpleStringSchema(),
        properties
    ));

4. 注意事项

  1. Kafka 数据格式一致性
    • 确保 ChangeRecord2 数据格式一致,否则需要添加异常处理。
  2. 高吞吐量优化
    • 调整 Kafka 和 Flink 的并行度。
    • 使用 Flink 的 Checkpoint 机制确保容错。
  3. Schema 动态更新
    • 如果数据库模式变化,Flink 需动态加载最新模式。

通过上述方式,Flink 可以高效地消费和处理 Kafka 中的 ChangeRecord2 数据,满足工业实时数据处理的需求。

发布者:myrgd,转载请注明出处:https://www.object-c.cn/5105

Like (0)
Previous 2024年12月5日 下午7:57
Next 2024年12月7日 下午6:50

相关推荐

  • 在 Ubuntu 16.04 上使用 GitLab CI 设置持续集成 (CI) 流水线步骤

    在 Ubuntu 16.04 上使用 GitLab CI 设置持续集成 (CI) 流水线需要完成以下步骤。GitLab CI/CD 是一个强大的工具,可以自动化代码测试、构建和部署。 步骤 1:安装 GitLab RunnerGitLab Runner 是用于执行 GitLab CI 流水线任务的工具。安装必要的软件包 添加 GitLab Runner 的官…

    操作系统 2024年12月2日
    00
  • 安装 Laravel 11 + Filament 详细教程

    安装Laravel 11之前选确保安装了Composer 管理器,接下来的步骤是通过Composer 包管理器安装完成的。 一、前提条件 二、使用 Composer 创建新的 Laravel 11 项目 三、在现有项目中添加 Laravel 11(如果是集成到现有项目) 请注意,在实际安装过程中,可能会遇到各种问题,如权限问题(在 Linux 下,如果没有足…

    2025年1月18日
    00
  • 在 CANoe 的 Test Module 中进行压力测试和鲁棒性测试

    在 CANoe 的 Test Module 中进行压力测试和鲁棒性测试,可以通过以下步骤快速构建并执行相关测试: 1. 定义测试目标 首先明确测试的具体内容,例如: 具体的目标可以包括: 2. 配置 CANoe 环境 确保 CANoe 配置已准备好,包含: 3. 创建压力测试脚本 在 Test Module 中使用 CAPL 或 Test Case Edit…

    2024年12月5日
    00
  • 修复 Elementor 网站上出现的 HTTPS 400 错误请求(服务器错误)

    在修复 Elementor 网站上出现的 HTTPS 400 错误请求(服务器错误)时,您需要采取以下步骤来排查和解决问题。这类错误通常与服务器配置、插件冲突或 HTTPS 配置相关。 1. 检查 HTTPS 配置 2. 排查插件冲突 3. 检查主题兼容性 4. 调整服务器配置 URL 重写规则: 5. 清理缓存 6. 检查网络请求 7. 联系主机服务商 如…

    2024年12月9日
    00
  • 在 Debian 8 上设置 Apache 虚拟主机步骤操作

    在 Debian 8 上设置 Apache 虚拟主机需要按照以下步骤操作。这可以让您为不同的域名或子域名配置独立的网站目录和设置。 步骤 1:安装 Apache确保 Apache 已安装。如果没有安装,可以运行以下命令: 步骤 2:创建虚拟主机的目录结构为每个虚拟主机创建单独的目录,例如: 为测试,在每个目录下创建一个 index.html 文件: 设置目录…

    2024年12月2日
    00
  • 在 Apache Spark 中,任务的切分(Task Division)机制

    在 Apache Spark 中,任务的切分(Task Division)是 Spark 将应用程序逻辑划分为多个并行任务的核心机制。任务切分的主要原则是基于数据分区和操作算子。以下是任务切分的核心原则和关键影响因素: 1. Spark 任务切分的基本概念 2. 任务切分的原则 2.1 基于分区(Partition)的切分 2.2 基于依赖关系(Depend…

    2024年11月25日
    00
  • 微信支付域名回调用个人服务器域名的方法

    在使用微信支付功能时,微信支付的回调需要指定合法的 支付回调通知地址(即回调域名)。如果你想使用个人服务器的域名来作为微信支付的回调域名,需要满足以下条件并完成配置: 1. 域名要求 合法域名的要求 2. 配置个人服务器域名 步骤 1:准备域名 步骤 2:设置 HTTPS 步骤 3:配置域名解析 3. 微信支付后台配置 3. 保存配置。 4. 在代码中处理回…

    2024年11月24日
    00
  • 使用 Webpack 5 优化构建减少生成文件的体积提升前端性能

    在使用 Webpack 5 时,优化构建以减少生成文件的体积是提升前端性能的重要一步。以下是一些常见的优化方法和策略: 1. 开启生产模式 确保构建时使用生产模式,Webpack 会自动应用多种优化(如代码压缩、Tree Shaking 等): 或在配置文件中明确设置: 2. 启用 Tree Shaking Tree Shaking 是 Webpack 内置…

    2024年12月3日
    00
  • 浏览器跨域请求中携带 Cookie需要同时在前端和后端进行配置

    浏览器跨域请求中,要让请求携带 Cookie,需要同时在前端和后端进行配置。以下是实现的方法: 前端配置 在前端代码中使用 fetch 或 Axios 发起请求时,需要设置 credentials 属性: 1. Fetch 示例 2. Axios 示例 后端配置 在后端需要允许跨域请求,并确保 Cookie 能够正常传递。 1. 设置 Access-Cont…

    2024年12月9日
    00
  • ChatGPT 和文心一言(由百度开发)是两款智能对话产品那个更好用

    ChatGPT 和文心一言(由百度开发)是两款智能对话产品,各自有独特的优点,适用场景和体验因用户需求而异。以下是它们的一些对比,帮助你选择适合自己的工具: 1. 语言能力 2. 知识库 3. 应用场景 4. 技术生态 5. 用户体验 适用选择建议 总结:如果你主要以中文为主、需求偏向本地化应用,文心一言可能更贴合你的需求;如果你的需求是国际化、多语言或专业…

    2024年12月8日
    00
  • PHM技术:一维信号时序全特征分析(统计域/频域/时域)信号处理

    PHM(Prognostics and Health Management,预测与健康管理)技术中的一维信号时序特征分析,旨在从信号中提取与设备健康状态相关的多种特征。以下是针对统计域、频域和时域特征分析的详细介绍和常见方法。 1. 时域特征分析时域特征直接从原始信号提取,描述信号的统计特性或时间行为。这些特征反映信号的幅值、变化趋势和波形形状。1.1 常用…

    2024年11月28日
    00
  • AI视觉领域优秀的开源项目和框架

    AI视觉领域有很多优秀的开源项目和框架,可以满足不同的需求,从计算机视觉任务(如目标检测、图像分类)到复杂的视觉应用(如生成对抗网络、视频分析等)。以下是一些流行的开源框架、工具库和平台: 1. 通用计算机视觉框架 1.1 OpenCV 1.2 PyTorch Vision (TorchVision) 1.3 MMDetection 2. 图像分割与生成 2…

    2024年11月24日
    00
  • 在 MySQL 中 utf8mb4 和 utf8mb3 两种 UTF-8 编码的字符集主要区别

    在 MySQL 中,utf8mb4 和 utf8mb3 是两种 UTF-8 编码的字符集,它们的主要区别如下:1. 支持的字符范围不同utf8mb3:原来的 UTF-8 编码实现,支持最多 3 个字节的字符。无法存储超出基本多语言平面 (BMP) 的 Unicode 字符(U+10000 至 U+10FFFF),例如某些表情符号和特殊的语言字符。主要用于存储…

    2024年12月3日
    00
  • 若依集成 X-File-Storage 框架(实现图片上传阿里云 OSS 服务器)

    若依(Ruoyi)是一款基于 Spring Boot 的企业级开发框架,在此框架中集成 X-File-Storage 框架来实现图片上传到阿里云 OSS(对象存储服务)是一个常见的需求。通过这个集成,你可以便捷地将图片或文件上传到阿里云 OSS,并在系统中管理和访问这些文件。以下是详细的步骤说明: 1. 安装 X-File-Storage 框架 X-File…

    2024年11月25日
    00
  • 在区块链安全名词及常见攻击手法去中心化

    在区块链技术中,安全是一个至关重要的领域。由于区块链本身具备去中心化、不可篡改的特点,它在保证数据透明性和完整性的同时,也容易受到多种类型的攻击。为了更好地理解区块链的安全问题,我们需要了解一些相关的安全名词及常见的攻击手法。 1. 区块链相关安全名词 1.1 哈希函数(Hash Function) 哈希函数是区块链中数据验证和一致性保证的核心。哈希函数将输…

    2024年11月25日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信