开源模型-LangChain 记忆组件-RedisChatMessageHistory正确使用

在构建基于 LangChain 的对话式 AI 系统时,记忆组件(Memory)是实现上下文保持的重要模块,而 RedisChatMessageHistory 是基于 Redis 实现的聊天消息存储和检索机制。以下是正确使用 RedisChatMessageHistory 的方法及高阶应用说明。

1. 环境准备
在使用 RedisChatMessageHistory 之前,需要配置 Redis 服务,并确保安装必要的 Python 库。
安装依赖

pip install redis langchain

配置 Redis
启动 Redis 服务:

redis-server

确保 Redis 服务正常运行,默认监听地址为 localhost:6379

2. RedisChatMessageHistory 的基本使用
RedisChatMessageHistory 提供基于 Redis 的消息存储和检索,适合实现对话上下文管理。
配置示例
以下是一个使用 RedisChatMessageHistory 的基本示例:

from langchain.memory import RedisChatMessageHistory
from langchain.schema import AIMessage, HumanMessage

# 配置 Redis 连接
redis_url = "redis://localhost:6379/0"  # Redis 数据库地址
history = RedisChatMessageHistory(redis_url=redis_url, session_id="session_1")

# 添加消息
history.add_user_message("你好,AI!")
history.add_ai_message("你好!我可以帮你做什么?")

# 检索消息
messages = history.messages
for message in messages:
    print(f"{message.type}: {message.content}")

运行结果

human: 你好,AI!
ai: 你好!我可以帮你做什么?

3. 与 LangChain Memory 集成
为了更方便地使用消息历史,RedisChatMessageHistory 常与 ConversationBufferMemory 或其他 Memory 模块结合使用。
配合 Memory 使用示例

from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import RedisChatMessageHistory
from langchain.chains import ConversationChain
from langchain.llms import OpenAI

# Redis 配置
redis_url = "redis://localhost:6379/0"
chat_history = RedisChatMessageHistory(redis_url=redis_url, session_id="session_2")

# 配置 Memory
memory = ConversationBufferMemory(chat_memory=chat_history, return_messages=True)

# 配置对话链
llm = OpenAI(temperature=0)  # 使用 OpenAI 模型
conversation = ConversationChain(llm=llm, memory=memory)

# 开始对话
response = conversation.predict(input="你好,AI!")
print(response)

response = conversation.predict(input="能帮我讲一个笑话吗?")
print(response)

说明
session_id:标识 Redis 中的对话上下文,可以用于区分不同用户的会话。
return_messages:指定 Memory 是否返回完整消息记录。

4. 高阶用法:多用户会话管理
在多用户场景中,可以通过动态分配 session_id 来管理不同用户的会话历史。
示例代码

from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import RedisChatMessageHistory

def get_user_memory(user_id):
    session_id = f"user_{user_id}"  # 动态生成 session_id
    chat_history = RedisChatMessageHistory(redis_url="redis://localhost:6379/0", session_id=session_id)
    return ConversationBufferMemory(chat_memory=chat_history, return_messages=True)

# 假设有两个用户
user_1_memory = get_user_memory(user_id=1)
user_2_memory = get_user_memory(user_id=2)

# 添加对话记录
user_1_memory.chat_memory.add_user_message("用户1:你好")
user_2_memory.chat_memory.add_user_message("用户2:今天天气怎么样?")

# 检索对话记录
print("用户1记录:", user_1_memory.chat_memory.messages)
print("用户2记录:", user_2_memory.chat_memory.messages)

5. 持久化与清理
为了避免 Redis 数据库膨胀,可以设置过期时间或定期清理历史记录。
设置过期时间
通过 Redis 的键过期机制管理消息存储:

import redis

# 设置过期时间(单位:秒)
redis_client = redis.StrictRedis(host='localhost', port=6379, db=0)
redis_client.expire("session_1", 3600)  # 设置 session_1 的过期时间为 1 小时

清空会话历史

# 清除指定会话历史
chat_history.clear()

6. 优化建议
性能优化对于高并发场景,考虑使用 Redis Cluster 或配置 Redis 缓存策略。
安全性如果涉及敏感数据,启用 Redis 认证并使用 SSL/TLS 加密传输。
自定义格式自定义消息存储格式,可扩展 RedisChatMessageHistory 类以支持更多字段,如时间戳或用户标签。

通过 RedisChatMessageHistory 和 LangChain 的内存模块,可以轻松实现高效的对话上下文管理,适用于聊天机器人、语音助手等多种应用场景。如果需要进一步定制或优化,欢迎交流!

发布者:myrgd,转载请注明出处:https://www.object-c.cn/4887

Like (0)
Previous 2024年11月28日 下午7:16
Next 2024年11月28日 下午7:33

相关推荐

  • 在工业场景中使用 Apache Flink 处理 Kafka 数据是一种常见的实时流处理方案

    在工业场景中使用 Apache Flink 处理 Kafka 数据是一种常见的实时流处理方案,特别是针对 ChangeRecord 数据类型时,能够帮助实现高效的实时 ETL(提取、转换、加载)或事件驱动的应用。以下是关于如何用 Flink 处理 Kafka 数据,并重点解析 ChangeRecord2 的详细步骤和注意事项。 1. ChangeRecord…

    2024年12月5日
    00
  • 最新 pragma solidity 0 . 5 . 10 报错原因解决

    pragma solidity 0.5.10 会报错的原因通常与当前使用的 Solidity 编译器版本不支持该指定版本的语法有关。要解决此问题,需要确保使用正确的编译器版本或调整代码中的版本声明。 问题分析指定的版本过旧: Solidity 0.5.10 是较旧的版本,而现代的工具链(如 Truffle 或 Hardhat)可能默认安装更新版本的编译器。不…

    2024年11月27日
    00
  • 高性能 TongRDS 是一种分布式内存数据缓存中间件

    TongRDS 是一种分布式内存数据缓存中间件,旨在为高性能、高并发的应用场景提供快速的数据访问解决方案。类似于 Redis 或 Memcached,TongRDS 的核心功能围绕内存数据存储和分布式特性展开,同时可能具备特定的优化或扩展能力。 以下是 TongRDS 的可能特性和应用场景总结: 1. 核心特性 分布式缓存架构 高性能存储 灵活的数据模型 扩…

    2024年12月3日
    00
  • PHM技术:一维信号时序全特征分析(统计域/频域/时域)信号处理

    PHM(Prognostics and Health Management,预测与健康管理)技术中的一维信号时序特征分析,旨在从信号中提取与设备健康状态相关的多种特征。以下是针对统计域、频域和时域特征分析的详细介绍和常见方法。 1. 时域特征分析时域特征直接从原始信号提取,描述信号的统计特性或时间行为。这些特征反映信号的幅值、变化趋势和波形形状。1.1 常用…

    2024年11月28日
    00
  • llm-course,AI 大模型学习 开源项目

    以下是一些关于学习大语言模型(LLM)的开源项目和资源,适合对 AI 大模型感兴趣的学习者。包括课程、开源工具和项目代码。 1. 大语言模型学习课程 (LLM-Course)1.1 Stanford CS324 – Large Language Models简介:斯坦福大学推出的关于大语言模型的课程,内容涵盖模型的基础知识、应用场景、推理优化和社…

    2024年11月28日
    00
  • 在 Android 中 Matrix 实现图像的缩放和裁剪将 Glide 图像从 fitCenter 转换为 centerCrop

    在 Android 中,Matrix 可以用来实现图像的缩放和裁剪逻辑。要将 Glide 图像从 fitCenter 转换为 centerCrop,需要通过 Matrix 计算变换逻辑。以下是使用 Kotlin 实现的方法:实现步骤计算目标变换矩阵:根据目标宽高比,判断是否需要横向或纵向裁剪。设置 Matrix:使用 Matrix 执行缩放和平移操作。应用到…

    2024年12月3日
    00
  • 在 Neo4j 中存储 Liquidity Structure(的层次和关联结构)

    在 Neo4j 中存储 Liquidity Structure(流动性结构)的层次和关联结构时,可以使用其图数据库的特性:节点(Node)表示实体,关系(Relationship)表示这些实体之间的连接。流动性结构通常涉及多层次的实体(如母公司、子公司、账户、资金池等)及其关联关系。 以下是具体实现步骤: 1. 设计数据模型节点类型:实体层次(Hierarc…

    2024年12月2日
    00
  • Docker快速部署Nginx、Redis、MySQL、Tomcat以及制作镜像方法

    使用 Docker 快速部署 Nginx、Redis、MySQL、Tomcat 以及制作镜像 通过 Docker,开发者可以快速部署和管理各种服务。本文介绍如何快速使用 Docker 部署 Nginx、Redis、MySQL 和 Tomcat,以及如何制作自定义镜像。 1. Docker 基础准备 安装 Docker 如果还未安装 Docker,可按照以下步…

    2024年11月26日
    00
  • 远程仓库 ,从GitHub拉取代码失败的解决办法

    从GitHub拉取代码失败通常由以下几种原因引起:网络问题、认证失败、远程仓库配置错误等。以下是常见的失败场景及解决办法。 1. 网络问题症状连接超时。报错如:fatal: unable to access ‘https://github.com/…’: Failed to connect to github.com port 443: Connecti…

    2024年11月28日
    00
  • 在 Kubernetes 中,解决kubelet下载docker私有仓库验证问题

    在 Kubernetes 中,kubelet 默认需要访问容器镜像时,能够成功从 Docker 私有仓库拉取镜像。遇到验证问题时,通常需要解决 镜像仓库认证 和 TLS 证书配置 问题。以下是具体步骤: 1. 配置私有镜像仓库认证如果私有镜像仓库需要身份验证,需要配置 imagePullSecrets 或在每个节点设置全局 Docker 登录。方法 1:使用…

    2024年12月2日
    00
  • ChatGPT 和文心一言(由百度开发)是两款智能对话产品那个更好用

    ChatGPT 和文心一言(由百度开发)是两款智能对话产品,各自有独特的优点,适用场景和体验因用户需求而异。以下是它们的一些对比,帮助你选择适合自己的工具: 1. 语言能力 2. 知识库 3. 应用场景 4. 技术生态 5. 用户体验 适用选择建议 总结:如果你主要以中文为主、需求偏向本地化应用,文心一言可能更贴合你的需求;如果你的需求是国际化、多语言或专业…

    2024年12月8日
    00
  • Android 解决 “Module was compiled with an incompatible version of Kotlin“

    “Module was compiled with an incompatible version of Kotlin” 错误通常出现在 Android 开发中,因为模块的 Kotlin 编译器版本与项目中的 Kotlin 编译器版本不匹配。以下是解决此问题的方法: 1. 检查 Kotlin 插件版本步骤:打开 Android Studio。点击顶部菜单的 …

    2024年11月26日
    00
  • 在github上提交PR(Pull Request) + 多个pr同时提交、互不干扰的方法

    在 GitHub 上提交 PR(Pull Request)是一种将代码变更合并到主分支或其他目标分支的常见方式。在同时处理多个 PR 时,需要使用独立的分支来避免相互干扰。以下是详细教程: 步骤一:单个 PR 的提交流程Fork 仓库如果没有直接访问权限,先 fork 原仓库到自己的 GitHub 帐号。在 fork 的仓库上操作自己的代码。克隆仓库到本地 …

    2024年11月26日
    00
  • 解决登录Google账号,手机上Google账号无法验证问题?

    遇到 Google账号无法验证 的问题时,通常是因为以下几个原因之一: 以下是一些解决方法: 1. 检查手机网络和信号确保手机信号和网络连接稳定,有时验证码可能由于网络问题无法及时收到。如果你使用的是 短信验证,确保手机信号良好,短信接收正常。如果使用的是 Google 提供的 Google Authenticator 应用,确保应用正常工作,并且时间同步(…

    2024年11月28日
    00
  • 开源工具 Flowise 构建可视化的 AI 工作流

    Flowise 是一个开源的工具,用于构建可视化的 AI 工作流和对话代理。通过 Flowise,用户可以快速集成各种大语言模型(LLM)并与数据库交互。以下是详细的本地部署教程: 1. 前置条件 1.1 硬件和系统要求 1.2 软件要求 2. 本地部署步骤 2.1 克隆 Flowise 代码库 2.2 安装依赖 2.3 配置环境变量 2.4 启动服务 运行…

    2024年11月24日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信