开源模型-LangChain 记忆组件-RedisChatMessageHistory正确使用

在构建基于 LangChain 的对话式 AI 系统时,记忆组件(Memory)是实现上下文保持的重要模块,而 RedisChatMessageHistory 是基于 Redis 实现的聊天消息存储和检索机制。以下是正确使用 RedisChatMessageHistory 的方法及高阶应用说明。

1. 环境准备
在使用 RedisChatMessageHistory 之前,需要配置 Redis 服务,并确保安装必要的 Python 库。
安装依赖

pip install redis langchain

配置 Redis
启动 Redis 服务:

redis-server

确保 Redis 服务正常运行,默认监听地址为 localhost:6379

2. RedisChatMessageHistory 的基本使用
RedisChatMessageHistory 提供基于 Redis 的消息存储和检索,适合实现对话上下文管理。
配置示例
以下是一个使用 RedisChatMessageHistory 的基本示例:

from langchain.memory import RedisChatMessageHistory
from langchain.schema import AIMessage, HumanMessage

# 配置 Redis 连接
redis_url = "redis://localhost:6379/0"  # Redis 数据库地址
history = RedisChatMessageHistory(redis_url=redis_url, session_id="session_1")

# 添加消息
history.add_user_message("你好,AI!")
history.add_ai_message("你好!我可以帮你做什么?")

# 检索消息
messages = history.messages
for message in messages:
    print(f"{message.type}: {message.content}")

运行结果

human: 你好,AI!
ai: 你好!我可以帮你做什么?

3. 与 LangChain Memory 集成
为了更方便地使用消息历史,RedisChatMessageHistory 常与 ConversationBufferMemory 或其他 Memory 模块结合使用。
配合 Memory 使用示例

from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import RedisChatMessageHistory
from langchain.chains import ConversationChain
from langchain.llms import OpenAI

# Redis 配置
redis_url = "redis://localhost:6379/0"
chat_history = RedisChatMessageHistory(redis_url=redis_url, session_id="session_2")

# 配置 Memory
memory = ConversationBufferMemory(chat_memory=chat_history, return_messages=True)

# 配置对话链
llm = OpenAI(temperature=0)  # 使用 OpenAI 模型
conversation = ConversationChain(llm=llm, memory=memory)

# 开始对话
response = conversation.predict(input="你好,AI!")
print(response)

response = conversation.predict(input="能帮我讲一个笑话吗?")
print(response)

说明
session_id:标识 Redis 中的对话上下文,可以用于区分不同用户的会话。
return_messages:指定 Memory 是否返回完整消息记录。

4. 高阶用法:多用户会话管理
在多用户场景中,可以通过动态分配 session_id 来管理不同用户的会话历史。
示例代码

from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import RedisChatMessageHistory

def get_user_memory(user_id):
    session_id = f"user_{user_id}"  # 动态生成 session_id
    chat_history = RedisChatMessageHistory(redis_url="redis://localhost:6379/0", session_id=session_id)
    return ConversationBufferMemory(chat_memory=chat_history, return_messages=True)

# 假设有两个用户
user_1_memory = get_user_memory(user_id=1)
user_2_memory = get_user_memory(user_id=2)

# 添加对话记录
user_1_memory.chat_memory.add_user_message("用户1:你好")
user_2_memory.chat_memory.add_user_message("用户2:今天天气怎么样?")

# 检索对话记录
print("用户1记录:", user_1_memory.chat_memory.messages)
print("用户2记录:", user_2_memory.chat_memory.messages)

5. 持久化与清理
为了避免 Redis 数据库膨胀,可以设置过期时间或定期清理历史记录。
设置过期时间
通过 Redis 的键过期机制管理消息存储:

import redis

# 设置过期时间(单位:秒)
redis_client = redis.StrictRedis(host='localhost', port=6379, db=0)
redis_client.expire("session_1", 3600)  # 设置 session_1 的过期时间为 1 小时

清空会话历史

# 清除指定会话历史
chat_history.clear()

6. 优化建议
性能优化对于高并发场景,考虑使用 Redis Cluster 或配置 Redis 缓存策略。
安全性如果涉及敏感数据,启用 Redis 认证并使用 SSL/TLS 加密传输。
自定义格式自定义消息存储格式,可扩展 RedisChatMessageHistory 类以支持更多字段,如时间戳或用户标签。

通过 RedisChatMessageHistory 和 LangChain 的内存模块,可以轻松实现高效的对话上下文管理,适用于聊天机器人、语音助手等多种应用场景。如果需要进一步定制或优化,欢迎交流!

发布者:myrgd,转载请注明出处:https://www.object-c.cn/4887

Like (0)
Previous 2024年11月28日 下午7:16
Next 2024年11月28日 下午7:33

相关推荐

  • Git 报错 fatal: unable to access ‘https://github.com/…/.git’: Recv failure: Connection was reset,问题排查方法

    Git 报错 fatal: unable to access ‘https://github.com/…/.git’: Recv failure: Connection was reset,通常是由于网络连接问题导致的。以下是一些常见原因及解决方法: 1. 检查网络连接确保网络能够正常访问 GitHub。在浏览器中访问 https://github.co…

    2024年11月26日
    00
  • 开源免费的AI智能文字识别产品(OCR识别)

    以下是一些免费和开源的 AI 智能文字识别(OCR)和文档处理工具,可以满足通用文档解析、OCR 识别、格式转换、篡改检测以及证件识别等需求: 1. OCR 识别工具 Tesseract OCR PaddleOCR 2. 文档格式转换工具 Apache PDFBox LibreOffice 3. 篡改检测工具 DocGuard 4. 证件识别工具 EasyO…

    2024年11月26日
    00
  • 在区块链安全名词及常见攻击手法去中心化

    在区块链技术中,安全是一个至关重要的领域。由于区块链本身具备去中心化、不可篡改的特点,它在保证数据透明性和完整性的同时,也容易受到多种类型的攻击。为了更好地理解区块链的安全问题,我们需要了解一些相关的安全名词及常见的攻击手法。 1. 区块链相关安全名词 1.1 哈希函数(Hash Function) 哈希函数是区块链中数据验证和一致性保证的核心。哈希函数将输…

    2024年11月25日
    00
  • 微信小程序开发中使用 Tailwind CSS 提高开发效率和代码的可维护性

    Tailwind CSS 是一个利用原子化 CSS 类来构建用户界面的框架,在微信小程序开发中使用 Tailwind CSS 可以提高开发效率和代码的可维护性。以下是在微信小程序中使用 Tailwind CSS 进行原子 CSS 开发的具体步骤: 安装 Tailwind CSS 配置 Tailwind CSS 引入样式:在微信小程序的全局样式文件app.wx…

    2024年12月15日
    00
  • 在国内访问 GitHub 可能会遇到加载缓慢或无法打开的问题

    在国内访问 GitHub 可能会遇到加载缓慢或无法打开的问题,这通常与网络连接、DNS 设置或网络限制有关。以下是几种解决方法: 1. 更改 DNSDNS 配置错误可能导致 GitHub 无法正常访问。可以尝试修改 DNS 为公共 DNS 服务:推荐使用:阿里云 DNS:223.5.5.5 和 223.6.6.6Google DNS:8.8.8.8 和 8.…

    2024年11月27日
    00
  • 使用 Flutter 实现酷炫的粒子动画,可以通过 Shader 来提升效果

    使用 Flutter 实现酷炫的粒子动画,可以通过 Shader 来提升效果。这种方法结合 Flutter 的强大绘图功能和 GLSL 的灵活性,可以创造出高性能且自定义程度极高的视觉效果。以下是实现的基本步骤和核心代码: 核心思想使用 Flutter 的 CustomPainter 绘制粒子。通过 FragmentProgram (GLSL Shader)…

    2024年12月2日
    00
  • 实现 Qwen2.5-7B-Instruct 模型在本地部署并结合 vLLM 推理加速和 Gradio 搭建前端界面

    要实现 Qwen2.5-7B-Instruct 模型在本地部署并结合 vLLM 推理加速和 Gradio 搭建前端界面,以下是详细步骤: 1. 环境准备 2. 模型加载与配置 通过 Hugging Face Transformers 加载 Qwen2.5-7B-Instruct 模型: 3. 推理加速 4. 前端界面部署 通过 Gradio 创建简洁的用户界…

    2024年11月26日
    00
  • 开源工具 Flowise 构建可视化的 AI 工作流

    Flowise 是一个开源的工具,用于构建可视化的 AI 工作流和对话代理。通过 Flowise,用户可以快速集成各种大语言模型(LLM)并与数据库交互。以下是详细的本地部署教程: 1. 前置条件 1.1 硬件和系统要求 1.2 软件要求 2. 本地部署步骤 2.1 克隆 Flowise 代码库 2.2 安装依赖 2.3 配置环境变量 2.4 启动服务 运行…

    2024年11月24日
    00
  • 不同版本ffmpeg压缩比差距很大的问题(使用videotoolbox硬编码)

    不同版本的 FFmpeg 在使用 videotoolbox 硬件编码时,压缩比差距较大的问题,通常与以下几个因素相关:1. FFmpeg 硬件编码支持的变化:FFmpeg 集成了多种硬件加速技术(例如在 macOS 上使用 videotoolbox),而随着版本的更新,FFmpeg 可能对硬件编码进行了修复、改进或修改,这些变化可能会导致不同版本之间的压缩效…

    2024年11月27日
    00
  • Gradle 在国内访问官方仓库

    Gradle 在国内访问官方仓库(如 Maven Central 或 JCenter)时,可能会受到网络限制影响,速度较慢甚至无法连接。为解决此问题,可以配置国内镜像源,提高构建效率 推荐的国内镜像源以下是常用的国内 Gradle 仓库镜像:阿里云 Maven 仓库:地址:https://maven.aliyun.com/repository/public华…

    2024年11月26日
    00
  • 塞风加速器下载安装教程页(页脚安装包)

    Ps iphon 是一款用于绕过互联网审查和访问被封锁网站的免费工具。它通过 VPN、SSH 或 HTTP 代理技术实现翻墙功能。以下是 Ps iphon 在不同平台上的安装教程。 Ps iphon 安装教程 1. 在 Android 上安装 Ps iphon 2. 在 Windows 上安装 Ps iphon 3. 在 iOS 上安装 Psiphon iO…

    2024年12月27日
    00
  • 在 Android 中 Matrix 实现图像的缩放和裁剪将 Glide 图像从 fitCenter 转换为 centerCrop

    在 Android 中,Matrix 可以用来实现图像的缩放和裁剪逻辑。要将 Glide 图像从 fitCenter 转换为 centerCrop,需要通过 Matrix 计算变换逻辑。以下是使用 Kotlin 实现的方法:实现步骤计算目标变换矩阵:根据目标宽高比,判断是否需要横向或纵向裁剪。设置 Matrix:使用 Matrix 执行缩放和平移操作。应用到…

    2024年12月3日
    00
  • 远程仓库 ,从GitHub拉取代码失败的解决办法

    从GitHub拉取代码失败通常由以下几种原因引起:网络问题、认证失败、远程仓库配置错误等。以下是常见的失败场景及解决办法。 1. 网络问题症状连接超时。报错如:fatal: unable to access ‘https://github.com/…’: Failed to connect to github.com port 443: Connecti…

    2024年11月28日
    00
  • Docker快速部署Nginx、Redis、MySQL、Tomcat以及制作镜像方法

    使用 Docker 快速部署 Nginx、Redis、MySQL、Tomcat 以及制作镜像 通过 Docker,开发者可以快速部署和管理各种服务。本文介绍如何快速使用 Docker 部署 Nginx、Redis、MySQL 和 Tomcat,以及如何制作自定义镜像。 1. Docker 基础准备 安装 Docker 如果还未安装 Docker,可按照以下步…

    2024年11月26日
    00
  • PHM技术:一维信号时序全特征分析(统计域/频域/时域)信号处理

    PHM(Prognostics and Health Management,预测与健康管理)技术中的一维信号时序特征分析,旨在从信号中提取与设备健康状态相关的多种特征。以下是针对统计域、频域和时域特征分析的详细介绍和常见方法。 1. 时域特征分析时域特征直接从原始信号提取,描述信号的统计特性或时间行为。这些特征反映信号的幅值、变化趋势和波形形状。1.1 常用…

    2024年11月28日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信