在 Apache Spark 中,任务的切分(Task Division)机制

Apache Spark 中,任务的切分(Task Division)是 Spark 将应用程序逻辑划分为多个并行任务的核心机制。任务切分的主要原则是基于数据分区和操作算子。以下是任务切分的核心原则和关键影响因素:

1. Spark 任务切分的基本概念

  • Task:Spark 的最小计算单元,一个 Task 处理一个分区的数据。
  • Stage:一组可以并行执行的任务,每个 Stage 包含多个 Task。
  • Job:由一个 Action(如 count()save())触发的计算任务,是 Stage 的集合。

2. 任务切分的原则

2.1 基于分区(Partition)的切分

  • Spark 的任务划分以 分区(Partition) 为基础,每个分区的数据由一个 Task 处理。
  • 分区数决定了 Task 的数量,通常由以下几个因素确定:
    1. 初始 RDD 分区数
      • 数据读取时分区数的默认值:
        • HDFS 文件:由 HDFS 块大小决定,默认 128MB 或 64MB。
        • Local 文件:由 sparkContext.textFile(path, numPartitions) 中的 numPartitions 参数决定。
    2. 后续操作对分区的影响
      • 转换算子(如 repartition()coalesce())会重新定义分区数。
      • 数据 Shuffle 也会重新分区,默认的分区数可以通过 spark.sql.shuffle.partitions 配置。

2.2 基于依赖关系(Dependency)的切分

  • 根据 RDD 的依赖关系,划分计算阶段(Stage):
    1. 宽依赖(Wide Dependency)
      • 一次计算需要多个分区的数据(如 groupByKeyreduceByKey)。
      • 会引发 Shuffle,需重新划分 Stage。
    2. 窄依赖(Narrow Dependency)
      • 一次计算仅依赖一个分区的数据(如 mapfilter)。
      • 任务可以在同一 Stage 中完成。

2.3 基于算子的切分

  • Action 操作会触发一个 Job,每个 Job 会切分成多个 Stage:
    • Stage 划分依据是 算子类型依赖关系
    • 例如:
rdd.map(...).filter(...).reduceByKey(...).count()

mapfilter 为窄依赖,在同一 Stage。

reduceByKey 引发 Shuffle,产生新 Stage。

3. 任务切分的影响因素

3.1 数据源

  • HDFS:分区数受 HDFS 块大小影响。
  • Kafka:分区数与 Kafka Topic 分区数一致。
  • 本地文件:受文件的大小和读取方式影响。

3.2 算子

  • 窄依赖算子:如 mapflatMapfilter,不会触发 Stage 划分。
  • 宽依赖算子:如 reduceByKeyjoingroupByKey,会触发 Shuffle 和 Stage 切分。

3.3 分区数

  • 分区数的大小直接决定 Task 的数量:
    • 分区数太少,不能充分利用集群资源(任务并行度低)。
    • 分区数太多,可能导致任务调度开销增加。

3.4 配置参数

  • spark.default.parallelism:默认的 RDD 分区数(推荐设置为 2-3 倍的 Executor 核心数)。
  • spark.sql.shuffle.partitions:Shuffle 操作的默认分区数,适用于 SQL 操作。

4. Spark 任务切分优化

4.1 数据分区优化

  • 使用 repartition()coalesce() 调整分区数:
    • 增加分区repartition() 会触发全量 Shuffle,适合大任务。
    • 减少分区coalesce() 会尽量避免 Shuffle,适合减少小任务。
  • 示例:python复制代码
rdd = rdd.repartition(100)  # 将分区数调整为 100

4.2 算子优化

  • 优先使用聚合算子:如 reduceByKey 优于 groupByKey,可减少 Shuffle 数据量。
  • 本地合并:如 mapPartitions,在分区内先进行局部计算。

4.3 分区策略优化

  • 自定义分区器:对 key-value 数据可以使用 partitionBy 自定义分区规则。
    • 示例:python复制代码
rdd = rdd.partitionBy(10)  # 自定义为 10 个分区

4.4 配置调整

  • 并行度设置
    • 增加 spark.default.parallelismspark.sql.shuffle.partitions 的值,提升任务并行度。
  • 优化资源分配
    • 确保每个 Executor 有足够的内存和 CPU。

5. 实例分析:任务划分示例

以下示例展示 Spark 如何根据分区和依赖划分任务:

代码示例

from pyspark import SparkContext

sc = SparkContext("local", "Task Division Example")

data = [("a", 1), ("b", 2), ("a", 3), ("b", 4), ("c", 5)]
rdd = sc.parallelize(data, 2)

# 1. Map 操作(窄依赖,不引发 Shuffle)
mapped_rdd = rdd.map(lambda x: (x[0], x[1] * 2))

# 2. ReduceByKey 操作(宽依赖,引发 Shuffle)
reduced_rdd = mapped_rdd.reduceByKey(lambda x, y: x + y)

# 3. Collect 动作(触发 Job)
result = reduced_rdd.collect()

print(result)

任务划分

  1. 初始分区数rdd 分为 2 个分区。
  2. Stage 1
    • 执行 map 操作,生成 2 个 Task(每个分区一个)。
  3. Stage 2
    • reduceByKey 引发 Shuffle,生成新的 2 个 Task。
  4. Stage 3
    • collect 操作触发结果收集任务。

6. 总结

  • Spark 的任务切分主要基于数据分区和算子依赖关系。
  • 窄依赖 算子通常在一个 Stage 内完成,而 宽依赖 算子会引发 Shuffle 和 Stage 切分。
  • 任务切分影响集群资源利用效率,合理配置分区数、选择高效算子是优化的关键。

发布者:myrgd,转载请注明出处:https://www.object-c.cn/4521

Like (0)
Previous 2024年11月25日 上午11:02
Next 2024年11月25日 下午4:14

相关推荐

  • 开源工具 Flowise 构建可视化的 AI 工作流

    Flowise 是一个开源的工具,用于构建可视化的 AI 工作流和对话代理。通过 Flowise,用户可以快速集成各种大语言模型(LLM)并与数据库交互。以下是详细的本地部署教程: 1. 前置条件 1.1 硬件和系统要求 1.2 软件要求 2. 本地部署步骤 2.1 克隆 Flowise 代码库 2.2 安装依赖 2.3 配置环境变量 2.4 启动服务 运行…

    2024年11月24日
    00
  • 在 Go 语言中,对文件的基础操作介绍

    在 Go 语言中,文件操作是基础技能之一,主要通过 os、io 和 io/ioutil 等标准库完成。以下是对文件操作的全面介绍,帮助你在 Go 语言的“成神之路”上迈出关键一步! 1. 创建文件使用 os.Create 创建文件,如果文件已存在会被清空。示例代码 2. 打开文件使用 os.Open 打开文件(只读模式),使用 os.OpenFile 可以指…

    2024年12月2日
    00
  • 云服务器的 宝塔面板 中配置 PHP 支持 WebP 格式的图片

    在云服务器的 宝塔面板 中配置 PHP 支持 WebP 格式的图片,主要是通过安装或启用 GD 库或者 ImageMagick 来实现 WebP 图片的处理支持。下面是一步步的操作方法:1. 确保服务器已经安装 WebP 扩展WebP 格式的支持需要 PHP 依赖于 GD 库或 ImageMagick 库。如果你使用的是 PHP 7.0 及以上版本,通常 G…

    2024年11月29日
    00
  • Apache DolphinScheduler 一款分布式大数据工作流调度系统

    Apache DolphinScheduler 是一款分布式大数据工作流调度系统。Task 是其核心组件之一,用于定义和调度具体的任务。以下是基于 Apache DolphinScheduler 3.1.9 的 Task 处理流程的解析: 1. Task 提交 在 DolphinScheduler 中,Task 的生命周期通常由用户提交一个具体的任务定义开始…

    2024年12月7日
    00
  • 通过 PHP 读取微软邮箱(Outlook/Office 365 邮箱)

    通过 PHP 读取微软邮箱(Outlook/Office 365 邮箱)邮件,通常需要使用 Microsoft Graph API,因为微软逐步淘汰了基于用户名和密码的 IMAP/SMTP 方式。Microsoft Graph API 支持 OAuth2.0 认证,可以安全地访问和管理用户邮件。 以下是实现读取微软邮箱邮件的完整示例。 实现步骤 1. 准备工…

    2024年11月25日
    00
  • Python 的 json模块序列化数据从文件里读取出来或存入文件

    Python 的 json 模块用于处理 JSON 格式的数据,可以将 JSON 数据与 Python 数据结构之间相互转换。以下是具体用法,包括从文件读取 JSON 数据以及将数据写入文件: 1. 将 JSON 数据从文件中读取到 Python 数据结构 代码示例: 解析过程: 2. 将 Python 数据结构写入到文件中(序列化为 JSON) 代码示例:…

    2024年11月26日
    00
  • 若依集成 X-File-Storage 框架(实现图片上传阿里云 OSS 服务器)

    若依(Ruoyi)是一款基于 Spring Boot 的企业级开发框架,在此框架中集成 X-File-Storage 框架来实现图片上传到阿里云 OSS(对象存储服务)是一个常见的需求。通过这个集成,你可以便捷地将图片或文件上传到阿里云 OSS,并在系统中管理和访问这些文件。以下是详细的步骤说明: 1. 安装 X-File-Storage 框架 X-File…

    2024年11月25日
    00
  • 在 Spring Boot 中实现定时任务,可以使用以下三种方式

    1. 使用 @Scheduled 注解 这是 Spring 提供的简单方式,基于注解实现定时任务。 步骤: 3. 创建任务类使用 @Scheduled 注解定义定时任务: 4. @Scheduled 参数详解 2. 使用 ScheduledExecutorService 如果任务管理需要更灵活,可以使用 Java 自带的线程池。 示例: 3. 使用 Quar…

    2024年11月26日
    00
  • 在安装Docker时,执行yum install -y yum-utils 报错的解决方法

    在安装 Docker 时,如果执行 yum install -y yum-utils 报错,可能是由于以下原因之一: 解决方法1. 检查 Yum 源配置确保您的系统配置了可用的 Yum 源。使用以下命令检查: 如果列表为空或不可用,重新配置一个有效的源(例如阿里云、腾讯云)。 替换为阿里云源(以 CentOS 7 为例): 2. 安装 EPEL 仓库yum-…

    2024年11月27日
    00
  • 在 Nuxt.js 应用中,webpack 的 compile 事件钩子构建过程

    在 Nuxt.js 应用中,webpack 的 compile 事件钩子通常用于在构建过程中处理或监听 Webpack 编译的状态。webpack 是 Nuxt.js 中的核心构建工具之一,而 Nuxt.js 本身是基于 Webpack 配置的,允许你通过扩展 Webpack 配置来进行自定义。要使用 webpack 的 compile 事件钩子,首先你需要…

    2024年11月29日
    00
  • 浏览器跨域请求中携带 Cookie需要同时在前端和后端进行配置

    浏览器跨域请求中,要让请求携带 Cookie,需要同时在前端和后端进行配置。以下是实现的方法: 前端配置 在前端代码中使用 fetch 或 Axios 发起请求时,需要设置 credentials 属性: 1. Fetch 示例 2. Axios 示例 后端配置 在后端需要允许跨域请求,并确保 Cookie 能够正常传递。 1. 设置 Access-Cont…

    2024年12月9日
    00
  • XiYan-SQL 是一种多生成器集成的 Text-to-SQL框架,专注于将自然语言查询转换为结构化查询语言

    XiYan-SQL 是一种多生成器集成的 Text-to-SQL(文本转 SQL)框架,专注于将自然语言查询转换为结构化查询语言(SQL),从而高效地与数据库交互。以下是该框架的主要特点、技术原理及其应用场景的解析: 1. XiYan-SQL 的核心特点 2. 核心技术原理 3. 应用场景 4. XiYan-SQL 的优势 5. 示例 输入: 自然语言查询:…

    2024年12月5日
    00
  • 最新 pragma solidity 0 . 5 . 10 报错原因解决

    pragma solidity 0.5.10 会报错的原因通常与当前使用的 Solidity 编译器版本不支持该指定版本的语法有关。要解决此问题,需要确保使用正确的编译器版本或调整代码中的版本声明。 问题分析指定的版本过旧: Solidity 0.5.10 是较旧的版本,而现代的工具链(如 Truffle 或 Hardhat)可能默认安装更新版本的编译器。不…

    2024年11月27日
    00
  • ubuntu服务器安装cuda11.0、cuDNN入门教程

    在 Ubuntu 服务器上安装 CUDA 11.0 和 cuDNN 的详细教程如下。本教程涵盖了从环境准备到安装和验证的完整流程,适用于初学者。 一、环境准备 1. 系统要求 2. 卸载旧版本(如有) 清理可能存在的旧版本 CUDA 和 NVIDIA 驱动: 二、安装 NVIDIA 驱动 1. 检查 GPU 支持情况 使用 lspci 或 nvidia-sm…

    2024年11月22日
    00
  • 微信小程序的 RequestTask.onChunkReceived 接口接收二进制数据流

    微信小程序的 RequestTask.onChunkReceived 接口允许接收分块的二进制数据流(如视频或音频流),但在小程序环境中,由于不支持 TextDecoder,处理这些数据时需要采用其他方法。 解析数据流的方案 模拟 TextDecoder 功能 如果需要将 ArrayBuffer 转换为字符串(如 UTF-8 编码),可以通过自定义方法模拟 …

    2024年11月26日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信