在 Apache Spark 中,任务的切分(Task Division)机制

Apache Spark 中,任务的切分(Task Division)是 Spark 将应用程序逻辑划分为多个并行任务的核心机制。任务切分的主要原则是基于数据分区和操作算子。以下是任务切分的核心原则和关键影响因素:

1. Spark 任务切分的基本概念

  • Task:Spark 的最小计算单元,一个 Task 处理一个分区的数据。
  • Stage:一组可以并行执行的任务,每个 Stage 包含多个 Task。
  • Job:由一个 Action(如 count()save())触发的计算任务,是 Stage 的集合。

2. 任务切分的原则

2.1 基于分区(Partition)的切分

  • Spark 的任务划分以 分区(Partition) 为基础,每个分区的数据由一个 Task 处理。
  • 分区数决定了 Task 的数量,通常由以下几个因素确定:
    1. 初始 RDD 分区数
      • 数据读取时分区数的默认值:
        • HDFS 文件:由 HDFS 块大小决定,默认 128MB 或 64MB。
        • Local 文件:由 sparkContext.textFile(path, numPartitions) 中的 numPartitions 参数决定。
    2. 后续操作对分区的影响
      • 转换算子(如 repartition()coalesce())会重新定义分区数。
      • 数据 Shuffle 也会重新分区,默认的分区数可以通过 spark.sql.shuffle.partitions 配置。

2.2 基于依赖关系(Dependency)的切分

  • 根据 RDD 的依赖关系,划分计算阶段(Stage):
    1. 宽依赖(Wide Dependency)
      • 一次计算需要多个分区的数据(如 groupByKeyreduceByKey)。
      • 会引发 Shuffle,需重新划分 Stage。
    2. 窄依赖(Narrow Dependency)
      • 一次计算仅依赖一个分区的数据(如 mapfilter)。
      • 任务可以在同一 Stage 中完成。

2.3 基于算子的切分

  • Action 操作会触发一个 Job,每个 Job 会切分成多个 Stage:
    • Stage 划分依据是 算子类型依赖关系
    • 例如:
rdd.map(...).filter(...).reduceByKey(...).count()

mapfilter 为窄依赖,在同一 Stage。

reduceByKey 引发 Shuffle,产生新 Stage。

3. 任务切分的影响因素

3.1 数据源

  • HDFS:分区数受 HDFS 块大小影响。
  • Kafka:分区数与 Kafka Topic 分区数一致。
  • 本地文件:受文件的大小和读取方式影响。

3.2 算子

  • 窄依赖算子:如 mapflatMapfilter,不会触发 Stage 划分。
  • 宽依赖算子:如 reduceByKeyjoingroupByKey,会触发 Shuffle 和 Stage 切分。

3.3 分区数

  • 分区数的大小直接决定 Task 的数量:
    • 分区数太少,不能充分利用集群资源(任务并行度低)。
    • 分区数太多,可能导致任务调度开销增加。

3.4 配置参数

  • spark.default.parallelism:默认的 RDD 分区数(推荐设置为 2-3 倍的 Executor 核心数)。
  • spark.sql.shuffle.partitions:Shuffle 操作的默认分区数,适用于 SQL 操作。

4. Spark 任务切分优化

4.1 数据分区优化

  • 使用 repartition()coalesce() 调整分区数:
    • 增加分区repartition() 会触发全量 Shuffle,适合大任务。
    • 减少分区coalesce() 会尽量避免 Shuffle,适合减少小任务。
  • 示例:python复制代码
rdd = rdd.repartition(100)  # 将分区数调整为 100

4.2 算子优化

  • 优先使用聚合算子:如 reduceByKey 优于 groupByKey,可减少 Shuffle 数据量。
  • 本地合并:如 mapPartitions,在分区内先进行局部计算。

4.3 分区策略优化

  • 自定义分区器:对 key-value 数据可以使用 partitionBy 自定义分区规则。
    • 示例:python复制代码
rdd = rdd.partitionBy(10)  # 自定义为 10 个分区

4.4 配置调整

  • 并行度设置
    • 增加 spark.default.parallelismspark.sql.shuffle.partitions 的值,提升任务并行度。
  • 优化资源分配
    • 确保每个 Executor 有足够的内存和 CPU。

5. 实例分析:任务划分示例

以下示例展示 Spark 如何根据分区和依赖划分任务:

代码示例

from pyspark import SparkContext

sc = SparkContext("local", "Task Division Example")

data = [("a", 1), ("b", 2), ("a", 3), ("b", 4), ("c", 5)]
rdd = sc.parallelize(data, 2)

# 1. Map 操作(窄依赖,不引发 Shuffle)
mapped_rdd = rdd.map(lambda x: (x[0], x[1] * 2))

# 2. ReduceByKey 操作(宽依赖,引发 Shuffle)
reduced_rdd = mapped_rdd.reduceByKey(lambda x, y: x + y)

# 3. Collect 动作(触发 Job)
result = reduced_rdd.collect()

print(result)

任务划分

  1. 初始分区数rdd 分为 2 个分区。
  2. Stage 1
    • 执行 map 操作,生成 2 个 Task(每个分区一个)。
  3. Stage 2
    • reduceByKey 引发 Shuffle,生成新的 2 个 Task。
  4. Stage 3
    • collect 操作触发结果收集任务。

6. 总结

  • Spark 的任务切分主要基于数据分区和算子依赖关系。
  • 窄依赖 算子通常在一个 Stage 内完成,而 宽依赖 算子会引发 Shuffle 和 Stage 切分。
  • 任务切分影响集群资源利用效率,合理配置分区数、选择高效算子是优化的关键。

发布者:myrgd,转载请注明出处:https://www.object-c.cn/4521

Like (0)
Previous 2024年11月25日 上午11:02
Next 2024年11月25日 下午4:14

相关推荐

  • 在 Ubuntu 16.04 上使用 GitLab CI 设置持续集成 (CI) 流水线步骤

    在 Ubuntu 16.04 上使用 GitLab CI 设置持续集成 (CI) 流水线需要完成以下步骤。GitLab CI/CD 是一个强大的工具,可以自动化代码测试、构建和部署。 步骤 1:安装 GitLab RunnerGitLab Runner 是用于执行 GitLab CI 流水线任务的工具。安装必要的软件包 添加 GitLab Runner 的官…

    操作系统 2024年12月2日
    00
  • 将FFmpeg集成到 Spring Cloud构建分布式系统 对视频压缩处理

    在使用Spring Cloud构建分布式系统时,可以将FFmpeg集成到其中,用于对视频进行压缩和处理。以下是一个实现示例的详细步骤,包括代码示例和配置说明。 1. FFmpeg 简介 FFmpeg 是一个强大的开源工具,可以用来对音视频进行转换、压缩、剪辑等操作。通过命令行工具或调用其库,你可以高效处理多种格式的视频。 2. 环境准备 安装 FFmpeg …

    2024年11月23日
    00
  • 在使用 VS Code 和 Keil 协同开发 STM32 程序

    在使用 VS Code 和 Keil 协同开发 STM32 程序时,可以利用 Keil 强大的编译器 和 VS Code 的高效代码编辑功能,结合起来提高开发效率。以下是实现协同开发的详细步骤: 前置准备安装 Keil确保已安装 Keil MDK-ARM,并配置好开发环境。Keil 下载地址:Keil 官方网站安装 VS Code下载并安装最新版本的 VS …

    2024年12月1日
    00
  • 2024款拯救者Y7000p 安装ubuntu20.04无wifi问题?

    在安装 Ubuntu 20.04 后,如果你的 联想拯救者 Y7000P 2024 款 出现无线网络(WiFi)不可用的问题,通常是由于 WiFi 驱动程序不兼容或未正确加载。以下是详细的解决步骤: 一、问题分析 二、解决步骤 1. 检查 WiFi 网卡信息 通过以下命令确定网卡型号: 输出示例: 注意: 请记录网卡型号(如 Intel Wi-Fi 6 AX…

    2024年11月22日
    00
  • 在 Nuxt.js 应用中,webpack 的 compile 事件钩子构建过程

    在 Nuxt.js 应用中,webpack 的 compile 事件钩子通常用于在构建过程中处理或监听 Webpack 编译的状态。webpack 是 Nuxt.js 中的核心构建工具之一,而 Nuxt.js 本身是基于 Webpack 配置的,允许你通过扩展 Webpack 配置来进行自定义。要使用 webpack 的 compile 事件钩子,首先你需要…

    2024年11月29日
    00
  • 在安装Docker时,执行yum install -y yum-utils 报错的解决方法

    在安装 Docker 时,如果执行 yum install -y yum-utils 报错,可能是由于以下原因之一: 解决方法1. 检查 Yum 源配置确保您的系统配置了可用的 Yum 源。使用以下命令检查: 如果列表为空或不可用,重新配置一个有效的源(例如阿里云、腾讯云)。 替换为阿里云源(以 CentOS 7 为例): 2. 安装 EPEL 仓库yum-…

    2024年11月27日
    00
  • 开源工具 Flowise 构建可视化的 AI 工作流

    Flowise 是一个开源的工具,用于构建可视化的 AI 工作流和对话代理。通过 Flowise,用户可以快速集成各种大语言模型(LLM)并与数据库交互。以下是详细的本地部署教程: 1. 前置条件 1.1 硬件和系统要求 1.2 软件要求 2. 本地部署步骤 2.1 克隆 Flowise 代码库 2.2 安装依赖 2.3 配置环境变量 2.4 启动服务 运行…

    2024年11月24日
    00
  • 通过 PHP 读取微软邮箱(Outlook/Office 365 邮箱)

    通过 PHP 读取微软邮箱(Outlook/Office 365 邮箱)邮件,通常需要使用 Microsoft Graph API,因为微软逐步淘汰了基于用户名和密码的 IMAP/SMTP 方式。Microsoft Graph API 支持 OAuth2.0 认证,可以安全地访问和管理用户邮件。 以下是实现读取微软邮箱邮件的完整示例。 实现步骤 1. 准备工…

    2024年11月25日
    00
  • Android Studio 国内镜像,加速下载和构建过程

    在国内使用 Android Studio 时,由于访问 Google 的官方资源(如 Gradle 和 SDK)速度较慢甚至无法访问,可以通过配置国内镜像源来加速下载和构建过程。以下是详细配置步骤: 1. 配置 Gradle 国内镜像 Gradle 是 Android Studio 构建项目的重要工具,其依赖库通常托管在 Google Maven 和 JCe…

    2024年11月25日
    00
  • 在github上提交PR(Pull Request) + 多个pr同时提交、互不干扰的方法

    在 GitHub 上提交 PR(Pull Request)是一种将代码变更合并到主分支或其他目标分支的常见方式。在同时处理多个 PR 时,需要使用独立的分支来避免相互干扰。以下是详细教程: 步骤一:单个 PR 的提交流程Fork 仓库如果没有直接访问权限,先 fork 原仓库到自己的 GitHub 帐号。在 fork 的仓库上操作自己的代码。克隆仓库到本地 …

    2024年11月26日
    00
  • Python与Jupyter Notebook中的数据可视化实现

    数据可视化是分析和展示数据的重要手段,而 Python 与 Jupyter Notebook 是构建交互式数据可视化的重要工具组合。以下是如何在 Python 和 Jupyter Notebook 中实现数据可视化的详细介绍。 1. 常用数据可视化库Python 中有多个强大的可视化库,以下是几个常用的:1.1 Matplotlib特点:功能强大、灵活,但语…

    2024年11月26日
    00
  • wordpress 蜘蛛记录插件的功能记录网站的所有访问记录

    要在 WordPress 网站上实现类似的功能,通常你需要开发一个 WordPress 插件。以下是一步步创建一个插件的指南,它可以记录访问者的访问记录,区分搜索引擎蜘蛛,并保存访客的 IP 地址。 1. 创建插件目录和文件 2. 插件文件结构 插件的文件结构大概如下: 3. 编写插件代码 在 visitor-tracker.php 文件中,添加以下代码: …

    2024年11月22日
    00
  • Spring Boot 项目中对接海康摄像头的视频流播放

    在 Spring Boot 项目中对接海康摄像头的视频流播放,通常需要利用摄像头的 RTSP 协议,将实时视频流解码并转发到前端以实现播放功能。以下是具体实现步骤: 1. 项目准备 前置条件 RTSP 流地址格式 海康摄像头的 RTSP 流地址格式通常为: 例如: 2. 后端实现视频流转发 为了在后端转发视频流到前端,我们需要解码 RTSP 流并将其转为适配…

    2024年11月24日
    00
  • 在 Spring Boot 中实现定时任务,可以使用以下三种方式

    1. 使用 @Scheduled 注解 这是 Spring 提供的简单方式,基于注解实现定时任务。 步骤: 3. 创建任务类使用 @Scheduled 注解定义定时任务: 4. @Scheduled 参数详解 2. 使用 ScheduledExecutorService 如果任务管理需要更灵活,可以使用 Java 自带的线程池。 示例: 3. 使用 Quar…

    2024年11月26日
    00
  • 在 Debian 8 上设置 Apache 虚拟主机步骤操作

    在 Debian 8 上设置 Apache 虚拟主机需要按照以下步骤操作。这可以让您为不同的域名或子域名配置独立的网站目录和设置。 步骤 1:安装 Apache确保 Apache 已安装。如果没有安装,可以运行以下命令: 步骤 2:创建虚拟主机的目录结构为每个虚拟主机创建单独的目录,例如: 为测试,在每个目录下创建一个 index.html 文件: 设置目录…

    2024年12月2日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信